Cereals & Grains Association
Log In

02 Features
Cereal Foods World, Vol. 63, No. 6
DOI: https://doi.org/10.1094/CFW-63-6-0236
Print To PDF
Harnessing Microbial and Agricultural Systems to Transform the Wheat Supply Chain
Kevin D. Kephart,1 Akhil Srivastava,2 Megan Willis,3 Slavica Djonovic,4 and Angelyca A. Jackson5
Indigo Ag, Inc.

Charlestown, MA, U.S.A.
1 Corresponding author. 500 Rutherford Ave, Ste 201, Charlestown, MA 02129, U.S.A. Tel: +1.605.651.6653; E-mail: kkephart@indigoag.com
2 E-mail: asrivastava@indigoag.com
3 E-mail: mwillis@indigoag.com
4 E-mail: sdjonovic@indigoag.com
5 E-mail: ajackson@indigoag.com


Abstract

Wheat (Triticum aestivum L. and related Triticum spp.) is among the four most important agricultural crops grown worldwide and, along with rice, has particular importance because it is directly consumed by humans instead of being used primarily as feed for livestock. To meet demands from a growing global population, wheat production and wheat-based food industries are in critical need of technologies and management strategies to enhance production in a sustainable manner while also delivering more nutritious food. This article presents an overview of what one company is doing to advance the wheat industry. Indigo Ag, Inc. is using advanced analytical tools and technologies developed in the biomedical community to cultivate plant microbiomes in several crops, including wheat. The company is focused on symbiotic endophytes that improve crop production, especially under severe abiotic and biotic stresses. Indigo has also developed a management system that shares risks and rewards with growers. Added value is created by optimization of crop production and quality through 1) endophyte treatment technologies; 2) continuous agronomic insights provided by certified agronomists; 3) development of on-farm storage capacity; 4) extensive crop quality analysis; and 5) market analysis. Ultimately, this system-wide approach is providing what consumers are demanding—affordable and nutritious food that is produced through sustainable practices.





Trying to reach content?

View Full Article

if you don't have access, become a member

References

  1. Backman, P. A., and Sikora, R. A. Endophytes: An emerging tool for biological control. Biol. Control 46:1, 2008.
  2. Berg, G., Grube, M., Schloter, M., and Smalla, K. Unraveling the plant microbiome: Looking back and future perspectives. Front. Microbiol. 5:148, 2014.
  3. Campbell Soup Company Brands L.P. Corporate responsibility commitments. In: Campbell’s 2018 Corporate Responsibility Report. Published online at www.campbellcsr.com/csr/commitments.html. CSC Brands, Camden, NJ, 2018.
  4. Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y., and Zhang, L. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7:41564, 2017.
  5. Colla, G., Rouphael, Y., Bonini, P., and Cardarelli, M. Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int. J. Plant Prod. 9:171, 2015.
  6. Dixon, R. O. D., and Wheeler, C. T. Nitrogen Fixation in Plants (Tertiary Level Biology). Chapman and Hall, New York, 1986.
  7. Dreilling, L. Biotech resolution stirs controversy. Published online at www.hpj.com/archives/biotech-resolution-stirs-controversy/article_fa434733-531e-59dd-b7c8-58dc19d4c15c.html. High Plains J. Feb. 19, 2007.
  8. Drewnowski, A., and Gomez-Caneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 72:1424, 2000.
  9. Farquhar, G. D., and Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11:539, 1984.
  10. Field to Market: The Alliance for Sustainable Agriculture. Environmental and Socioeconomic Indicators for Measuring Outcomes of on Farm Agricultural Production in the United States, 3rd edition. B. Hickman, ed. Published online at http://fieldtomarket.org/media/2016/12/Field-to-Market_2016-National-Indicators-Report.pdf. Field to Market, Washington, DC, 2016.
  11. Food and Agriculture Organization of the United Nations. Maize, rice, wheat farming must become more sustainable. Published online at www.fao.org/news/story/en/item/273303/icode. FAO, Rome, 2014.
  12. Gdanetz, K., and Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1:158, 2017.
  13. Herrera, S. D., Grossi, C., Zawoznik, M., and Groppa, M. D. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res. 186-187:37, 2016.
  14. Hubbard, M., Germida, J. J., and Vujanovic, V. Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J. Appl. Microbiol. 116:109, 2013.
  15. Kellogg Company. 2017/2018 Corporate Responsibility Report. Published online at http://crreport.kelloggcompany.com. Kellogg Company, Battle Creek, MI, 2018.
  16. Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., and Lee, I. J. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 35:62, 2015.
  17. Larran, S., Perelló, A., Simón, M. R., and Moreno, V. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J. Microbiol. Biotechnol. 18:683, 2002.
  18. Larran, S., Simón, M. R., Moreno, M. V., Santamarina Siurana, M. P., and Perelló, A. Endophytes from wheat as biological agents against tan spot disease. Biol. Control 92:17, 2016.
  19. Lata, R., Chowdhury, S., Gond, S. K., and White, J. F., Jr. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 66:268, 2018.
  20. Lederberg, J., and McCray, A. T. 'Ome sweet 'omics—A genealogical treasury of words. Scientist 15:8, 2001.
  21. Lee, H. L., Mendelson, H., Rammohan, S., and Srivastava, A. Technology in agribusiness: Opportunities to drive value. Stanford Value Chain Innovation Initiative. Published online at www.gsb.stanford.edu/sites/gsb/files/publication-pdf/white-paper-vci-technology-agribusiness-opportunities-drive-value.pdf. Stanford Graduate School of Business, Stanford, CA, 2017.
  22. Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6:1130, 2016.
  23. Liu, H. W., Sun, C., Yang, H., Lin, X. U., and Guo, A. G. Promotion for wheat growth and root colonization after infecting wheat seeds with Azorhizobium caulinodans. Plant Nutr. Fert. Sci. 18:210, 2012.
  24. Marcussen, T., Sandve, S. R., Heier, L., Spannag, M., Pfeifer, M., et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092, 2014.
  25. Marshall, D., Tunali, B., and Nelson, L. R. Occurrence of fungal endophytes in species of wild Triticum. Crop Sci. 39:1507, 1999.
  26. Minervini, F., Giuseppe, C., Lattanzi, A., Tedone, L., Mastro, G. D., Gobbetti, M., and Angelis, M. D. Lactic acid bacteria in durum wheat flour are endophytic components of the plant during its entire life cycle. Appl. Environ. Microbiol. 81:6736, 2015.
  27. Minervini, F., Lattanzi, A., Dinardo, F. R., and Angelis, M. D. Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiol. 70:162, 2018.
  28. Mitter, B., Pfaffenbichler, N., Flavell, R., Compant, S., Antonielli, L. A., et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seed. Front. Microbiol. 8:1, 2017.
  29. NIH HMP Working Group, Peterson, J., Garges, S., Giovanni, M., McInnes, P., et al. The NIH Human Microbiome Project. Genome Res. 19:2317, 2009.
  30. Ofek-Lalzar, M., Gur, Y., Ben-Moshe, S., Sharon, O., Kosman, E., Michli, E., and Sharon, A. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol. Ecol. 92:1, 2016.
  31. Oldroyd, G. E. D., Murray, J. D., Poole, P. S., and Downie, J. A. The rules of engagement in legume-rhizobial symbiosis. Annu. Rev. Genet. 45:119, 2011.
  32. Pandey, P. K., Singh, S., Singh, A. K., Samanta, R., Yadav, R. N. S., and Singh, M. C. Inside the plant: Bacterial endophytes and abiotic stress alleviation. J. Appl. Nat. Sci. 8:1899, 2016.
  33. Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. DOI: https://doi.org/10.1371/journal.pone.0066428. 2013.
  34. Ringquist, J., Phillips, T., Renner, B., Sides, R., Stuart, K., Baum, M., and Flannery, J. Capitalizing on the shifting consumer food value equation. Published online at www2.deloitte.com/content/dam/Deloitte/us/Documents/consumer-business/us-fmi-gma-report.pdf. Deloitte Development LLC, Oakland, CA, 2016.
  35. Robinson, R. J., Fraaije, B. A., Clark, I. M., Jackson, R. W., Hirsch, P. R., and Mauchline, T. H. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381, 2016.
  36. Sánchez-Rodrígues, A. R., Raya-Díaz, S., Zammarreño, A. M., García-Mina, J. M., del Campillo, M. C., and Quasada-Moraga, E. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control 116:90, 2018.
  37. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., and Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92, 2016.
  38. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31:107, 1977.
  39. Schulz, B., and Boyle, C. The endophytic continuum. Mycol. Res. 109:661, 2005.
  40. Shehata, H. R., Ettinger, C. L., Eisen, J. A., and Raizada, M. N. Genes required for the anti-fungal activity of a bacterial endophyte isolated from a corn landrace grown continuously by subsistence farmers since 1000 BC. Front. Microbiol. 7:1548, 2016.
  41. Turner, T. R., James, E. K., and Poole, P. S. The plant microbiome. Genome Biol. 14:209, 2013.
  42. U.S. Department of Agriculture, Economic Research Service. Agricultural productivity in the U.S.: Summary of recent findings. Published online at www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/summary-of-recent-findings. USDA ERS, Washington, DC, 2017.
  43. Vujanovic, V., Yuan, X., Daida, P., Milunovic, B., and Germida, J. Manipulation of cold stratification and endophytic effects on expression patterns of RSG and KOA genes in coleorhiza of wheat seeds. Plant Growth Regul. 79:219, 2016.
  44. Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., and Lee, I. J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754, 2012.
  45. Zinniel, D. K., Lambrecht, P., Harris, N. B., Feng, Z., Kuczmarski, D., Higley, P., Ishimaru, C. A., Arunakumari, A., Barletta, R. G., and Vidaver, A. K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68:2198, 2002.