ABSTRACT
A new method for preparation of zein films involving plasticization of zein with oleic acid to form an intermediate moldable resin was presented. The resin was stretched over rigid frames to form thin membranes that were set in flexible films. The objective of the study was to investigate the effect of film preparation method on film properties. Tensile properties, microstructure, and thermal behavior of zein films plasticized with oleic acid were investigated for films prepared by conventional casting from ethanol solutions and by stretching of plasticized resins. Cast films were stiff and brittle, whereas resin films showed more flexibility and toughness. Differential scanning calorimetry thermograms of cast films indicated phase separations were generated when heated that were not observed for resin films. Microstructure images showed a higher degree of structure development and orientation in resin than in cast films. Glass-transition temperatures of resin films were measured at -94 and 104.4° C, indicating the film remained flexible through a wide temperature range. Resin film flexibility and toughness were attributed to effective plasticization that led to fiber formation and orientation.