ABSTRACT
Sweetpotato starch is high yielding but has very limited uses. It is possible to expand its application by blending it with other starches to obtain novel properties. In this study, functional properties of the blends of native sweetpotato starch with native, acid-thinned, and hydroxypropylated wheat starch were studied at different ratios (75:25, 50:50, 25:75). The swelling factor, extent of amylose leaching, pasting, and gel textural properties of the blends were nonadditive of their individual components, and could be mathematically modeled by quadratic equations in relation to the ratios. Two peaks during pasting were observed for some starch mixtures studied by Rapid ViscoAnalyser (RVA). The gelatinization and retrogradation enthalpies (ΔH) of the blends were additive of their individual components and could be modeled by linear equations. All starch mixtures exhibited two peaks during differential scanning calorimetry (DSC) scan for gelatinization, but a single peak for retrograded starches. This study may provide basis for formulation of mixtures using starch from diverse sources to develop more natural starch systems with a range of physicochemical properties.